Radix Sort is a non-comparative sorting algorithm that sorts numbers by processing individual digits. It processes digits from the least significant digit (LSD) to the most significant digit (MSD) or vice versa, depending on the implementation. Radix Sort can handle large numbers of elements efficiently when the number of digits (or characters for string sorting) is relatively small.
Complexity | |
---|---|
Best Time Complexity | O(nk) |
Average Time Complexity | O(nk) |
Worst Time Complexity | O(nk) |
Space Complexity | O(n+k) |
public class RadixSort {
public static void radixSort(int[] arr) {
int max = Arrays.stream(arr).max().getAsInt();
for (int exp = 1; max / exp > 0; exp *= 10) {
countingSort(arr, exp);
}
}
private static void countingSort(int[] arr, int exp) {
int n = arr.length;
int[] output = new int[n];
int[] count = new int[10];
for (int i = 0; i < n; i++) {
count[(arr[i] / exp) % 10]++;
}
for (int i = 1; i < 10; i++) {
count[i] += count[i - 1];
}
for (int i = n - 1; i >= 0; i--) {
output[count[(arr[i] / exp) % 10] - 1] = arr[i];
count[(arr[i] / exp) % 10]--;
}
System.arraycopy(output, 0, arr, 0, n);
}
int getMax(int arr[], int n) {
int max = arr[0];
for (int i = 1; i < n; i++) {
if (arr[i] > max)
max = arr[i];
}
return max;
}
void countSort(int arr[], int n, int exp) {
int output[n];
int count[10] = {0};
for (int i = 0; i < n; i++)
count[(arr[i] / exp) % 10]++;
for (int i = 1; i < 10; i++)
count[i] += count[i - 1];
for (int i = n - 1; i >= 0; i--) {
output[count[(arr[i] / exp) % 10] - 1] = arr[i];
count[(arr[i] / exp) % 10]--;
}
for (int i = 0; i < n; i++)
arr[i] = output[i];
}
void radixSort(int arr[], int n) {
int m = getMax(arr, n);
for (int exp = 1; m / exp > 0; exp *= 10)
countSort(arr, n, exp);
}
int getMax(int arr[], int n) {
return *max_element(arr, arr + n);
}
void countSort(int arr[], int n, int exp) {
int output[n];
int count[10] = {0};
for (int i = 0; i < n; i++)
count[(arr[i] / exp) % 10]++;
for (int i = 1; i < 10; i++)
count[i] += count[i - 1];
for (int i = n - 1; i >= 0; i--) {
output[count[(arr[i] / exp) % 10] - 1] = arr[i];
count[(arr[i] / exp) % 10]--;
}
for (int i = 0; i < n; i++)
arr[i] = output[i];
}
void radixSort(int arr[], int n) {
int m = getMax(arr, n);
for (int exp = 1; m / exp > 0; exp *= 10)
countSort(arr, n, exp);
}
def getMax(arr):
return max(arr)
def countingSort(arr, exp):
n = len(arr)
output = [0] * n
count = [0] * 10
for i in range(n):
index = (arr[i] // exp) % 10
count[index] += 1
for i in range(1, 10):
count[i] += count[i - 1]
for i in range(n - 1, -1, -1):
index = (arr[i] // exp) % 10
output[count[index] - 1] = arr[i]
count[index] -= 1
for i in range(n):
arr[i] = output[i]
def radixSort(arr):
max1 = getMax(arr)
exp = 1
while max1 // exp > 0:
countingSort(arr, exp)
exp *= 10